Beyond Conventional Data Warehousing

Florian Waas
Greenplum Inc.
Takeaways

• The basics
 • Who is Greenplum? What is *Greenplum Database*?

• The problem
 • Data growth and other recent trends in DWH
 • A look at different customers and their requirements

• The solution
 • Teaching an old dog new tricks: using an RDBMS for massively parallel data processing

• Conclusion
Greenplum Inc.

• **What:** High-performance database software for Business Intelligence and Data Warehousing

• **Where:** Based in San Mateo, CA

• **When:** Founded in June 2003; product GA in February 2006

• **Who:** Technical pioneers in data warehousing (Teradata, Microsoft, Oracle, Informix, Tandem, PostgreSQL, …)

• **Strategic Partner:** Powers the Sun Data Warehouse Appliance.
Greenplum Database

- DBMS
 - highly scalable
 - fault-tolerant
 - high-performance
- Based on Postgres
- Shared-nothing architecture
- Commodity hardware
- Currently supported on Solaris, Linux
Architecture

- Direct data load from ETL tool
- Convenient for small DW
- Potential bottleneck

- Optional
- Additional HW requirements
- Balanced scaling w.r.t. array

- Landing data for parallel load
- Mitigates I/O bottleneck

- Expert Analysts
- Ad-hoc data inspection

- Ad-hoc Queries
- Ad-hoc Reporting

- BI Tools

- Key for scalability
- Often: as drop-in replacement
- Sunfire X4500, X4200

- Optional
- Often: pre-existing licenses
- E.g. Microstrategy, BObjects
Sample Hardware Configuration – Sun Fire X4500 Data Server

- 2 dual core AMD processors
- 48 Hitachi Deskstar SATA II 7200 rpm 500GB drives
- 6 Marvell 8-port Serial-ATA 2.0 Storage Controllers
- Leverages Hyper-transport architecture to achieve high-performance I/O capabilities
Trends in DWH: Data Growth

- Growth of customer base
 - E.g. phone carriers in Asia
- Additional data sources
 - E.g. click-stream and ad-impression data
- Data processing – “Data Bunnies”
 - E.g. intermediate results of analysis, aggregated/expanded
- Data will continue to outpace Moore’s Law
Trends in DWH: Customers

- **New Customers**
 - Not your typical DB customers
 - No pre-existing DB infrastructure
 - Atypical data: logs, click-stream, etc.

- “Weight” of data less significant
 - E.g. CDR – call detail records
 - Click-stream vs. sales/transaction records
 - Often: Reflects behavior, not deliberate purchase decision
 - “bankers vs. teens”

- **Analysis as service**
Trends in DWH: Analysis

• Turn-around on reporting
 • Similar/same requirements despite increased data volume

• Automated/on-line decision making process
 • E.g. ad placement in social network applications

• Advanced data analysis processes over massive amounts of data
 • E.g. Bayesian classification
Requirements

- Petabyte-scale storage
- High-performance query processing
- Fault-tolerance/high-availability
- Constant loading activity
- “Richer processing capabilities”
 - Leverage parallelism automatically
 - Cannot move data (size, privacy concerns)
 - Integrate with existing programming environments
 - Not strictly a DWH requirement
Leveraging Greenplum Database

- GPDB designed for
 - Scalability
 - High-performance query processing
 - Fault-tolerance
- How to address processing needs?
How to use GPDB for Data Processing

- Typical installation 10s to 100s of CPU cores
- 100s GB memory
- 100s TB disk space
- Often largest individual system in data center
- Slack resources during off-peak times
Example: ETL (1)

- **Customer’s System**
 - 40 nodes
 - 160 CPU cores
 - 1 TB main memory
 - 3.6 TB/h load rate

- **ETL jobs**
 - 18 hours to process 1 day’s worth of data
 - 5 serial streams
 - Load time < 1hr
Example: ETL (2)

- ETL crucial in daily processing
- Mainly data cleaning: string manipulations, conversions, etc.
- Hard to parallelize effectively, load-balance
- Hard to recover if falling behind
 - E.g. glitches in ETL logic, data contamination
- Desired run time < 4hrs
Example: ETL (3)

- Load “dirty” raw data directly into GPDB
 - Trade-off: raw data bulkier

- Rewrite ETL logic in SQL
 - Cleaner program

- Run SQL statements on GPDB
 - Automatic parallelization, fully transparent
 - Max degree of parallelism
 - Run time < 3 hrs
Solution

• Leverage existing query processing infrastructure
• Rewrite procedural logic in SQL
• Enjoy benefits of SQL
 • Automatic parallelization
 • Add UDFs and UDAggs in other languages as needed, e.g. Java, C#, etc.
Challenges

- Query Processing does not mean *read-only*
- Database Technology suffers image problem
- SQL is difficult
 - Declarative programming perceived as non-intuitive
 - SQL dialects (portability issues)
 - Too powerful – overwhelming
- Requires special skillset/expertise
Summary

• Database technology for DWH addresses scalability, fault-tolerance and performance needs
• Users are looking for additional mileage from large-scale DWH installations
• ELT, and tools like UDFs, UDAggs become more attractive
• Existing database technology to be revamped into massively parallel processing engine
Beyond Conventional Data Warehousing

Florian Waas
Greenplum Inc.